RISC-V PAST, PRESENT, FUTURE

Krste Asanovic Prof. EECS, UC Berkeley; Chairman of the Board, RISC-V Foundation; Co-Founder and Chief Architect, SiFive Inc. RISC-

Why Instruction Set Architecture matters

Why can't Intel sell mobile chips?

- 99%+ of mobile phones/tablets based on ARM v7/v8 ISA
- Why can't ARM partners sell servers?
 - 99%+ of laptops/desktops/servers based on AMD64 ISA (over 95%+ built by Intel)
- How can IBM still sell mainframes?
 - IBM 360, oldest surviving ISA (50+ years)

ISA is most important interface in computer system where software meets hardware

Open Interfaces Work for Software!

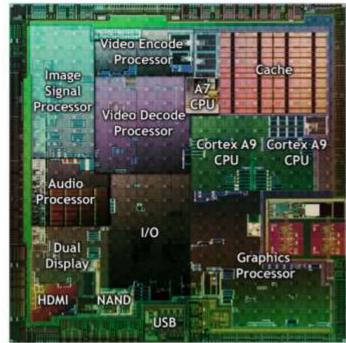
Field	Open Standard	Free, Open Impl. Proprietary Impl.	
Networking	Ethernet, TCP/IP	Many Many	
OS	Posix	Linux, FreeBSD	M/S Windows
Compilers	С	gcc, LLVM	Intel icc, ARMcc
Databases	SQL	MySQL, PostgresSQL	Oracle 12C, M/S DB2
Graphics	OpenGL	Mesa3D	M/S DirectX
ISA	??????		x86, ARM, IBM360

- Why not successful free & open standards and free & open implementations, like other fields?
- Dominant proprietary ISAs are not great designs

Companies and their ISAs Come and Go

Proprietary ISA fortunes tied to business fortunes and whims

- Digital Equipment Corporation
 - PDP-11, VAX, Alpha
- Intel
 - i960, i860, Itanium
- MIPS
 - Sold to Imagination, then bought by Wave AI startup, now opening R6?
- SPARC
 - Was opened by Sun, acquired by Oracle, now closed down
- ARM
 - Sold to Softbank at >40% premium
 - Now 25% sold off to Abu Dhabi investment fund



Today, many ISAs on one SoC

- Applications processor (usually ARM)
- Graphics processors
- Image processors
- Radio DSPs
- Audio DSPs
- Security processors
- Power-management processor
- > dozen ISAs on some SoCs each with unique software stack

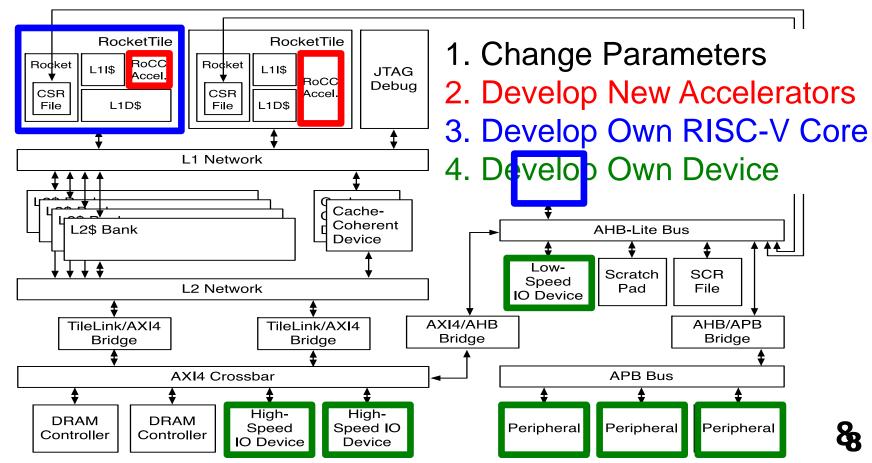
Why?

- Apps processor ISA too big, inflexible for accelerators
- IP bought from different places, each proprietary ISA
- Engineers build home-grown ISA cores

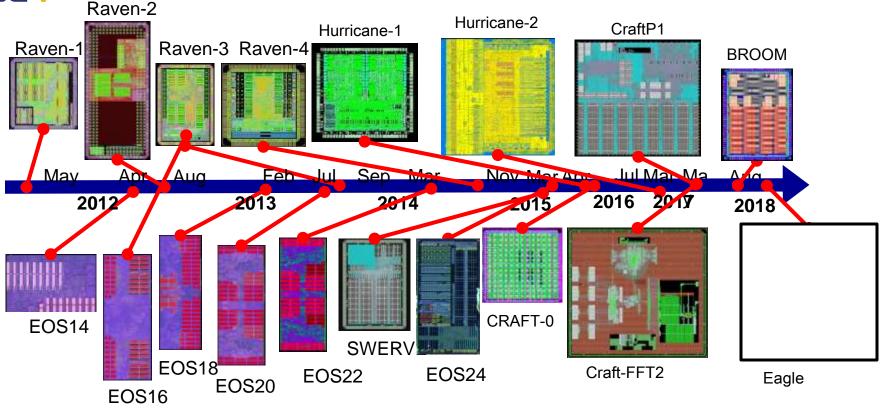
NVIDIA Tegra SoC

Do we need all these different ISAs? Must they be proprietary? Must they keep disappearing?

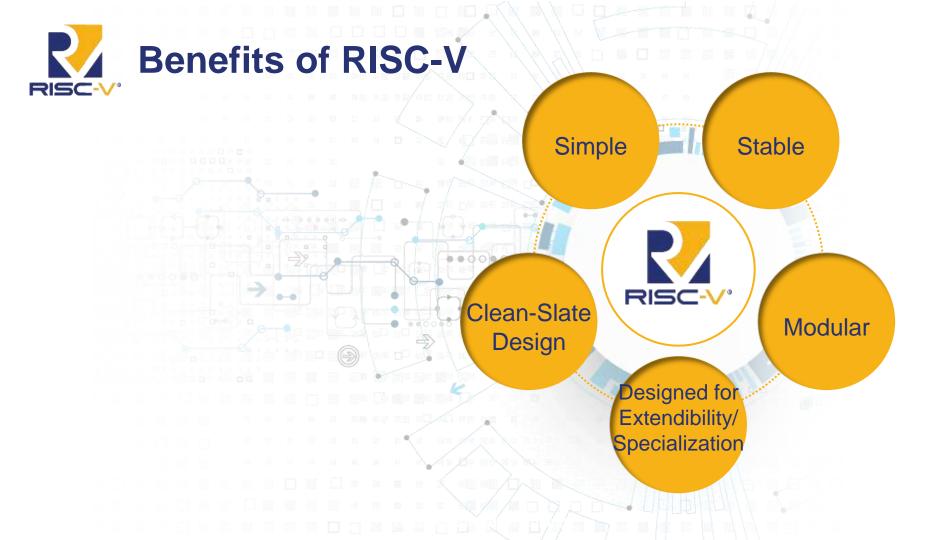
What if there was one stable free and open ISA everyone could use for everything?


RISC-V Background

- In 2010, after many years and many research projects using MIPS, SPARC, and x86, time for architecture group at UC Berkeley to choose ISA for next set of projects
- Obvious choices: x86 and ARM
 - x86 impossible too complex, IP issues
 - ARM mostly impossible complex, no 64-bit in 2010, IP issues
- So we started "3-month project" during summer 2010 to develop clean-slate ISA
 - Principal designers: Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic
- Four years later, May 2014, released frozen base user spec
 - many tapeouts and several research publications along the way
- Name RISC-V (pronounced "risk-five") represents fifth major Berkeley RISC ISA



Open-Source RISC-V Rocket Chip Generator



RISC-V SoCs Designed in Berkeley

In IBM 45nm, ST 28nm FDOI, TSMC 28nm and 16nm FF, GF 14nm

Dave Ditzel, Esperanto

RISC-V wasn't even on the shopping list of alternatives, but the more Esperanto's engineers looked at it, the more they realized it was more than a toy or just a teaching tool. "We assumed that RISC-V would probably lose 30% to 40% in compiler efficiency [versus Arm or MIPS or SPARC] because it's so simple," says Ditzel. "But our compiler guys benchmarked it, and darned if it wasn't within 1%."

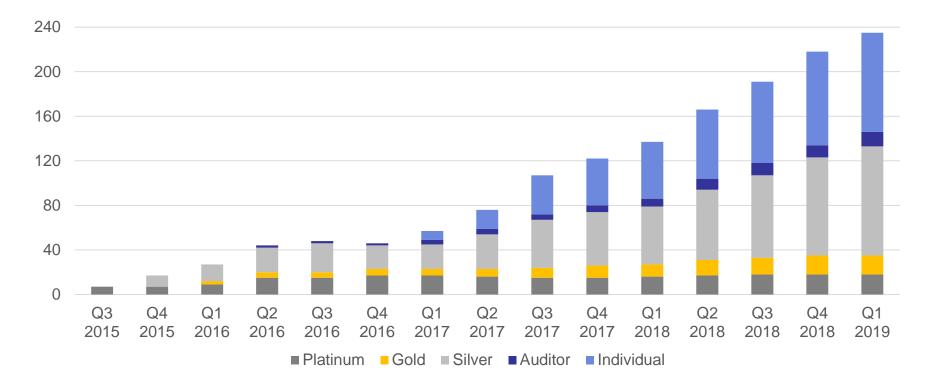
[Article by Jim Turley, EE Journal, December 13, 2017]

Modest RISC-V Project Goal

Become the industry-standard ISA for all computing devices

- Engineers sometimes "don't see forest for the trees"
- The movement is *not* happening because some benchmark ran 10% faster, or some implementation was 30% lower power
- The movement *is* happening because *new business model* changes everything
 - Pick ISA first, then pick vendor or build own core
 - Add your own extension without getting permission
- Implementation features/PPA will follow
 - Whatever is broken/missing in RISC-V will get fixed

A non-profit corporation governed by an elected board of directors


- Develop, ratify, and maintain the RISC-V ISA and related specifications
- Grow Membership
- Create awareness

- Krste Asanović, Chairman
 - Professor in the EECS Department at UC Berkeley, Chief Architect, SiFive
- David Patterson, Vice-Chairman
 - Google Architect, Retired Professor Computer Science UC Berkeley
- Zvonimir Bandić
 - Senior Director of Next Generation Platform Technologies at Western Digital Corporation
- Charlie Hauck
 - CEO of **Bluespec** Inc.
- Rob Oshana
 - Director Global SW Development at NXP
- Frans Sijstermans
 - Vice President Engineering at NVIDIA
- Ted Speers
 - Technical Fellow, Head of Product Architecture for Microsemi SoC Group

RISC-V Global Growth

RIS

RISC-V Members in 27 Countries Around the World! Representing ~52% of the global population!!

Bay Area RISC-V Group

https://www.meetup.com/Bay-Area-RISC-V-Meetup/

Rocky Mountain Area RISC-V Group

https://www.meetup.com/Rocky-Mountain-Area-RISC-V-Group/

Austin Area RISC-V Group

https://www.meetup.com/Austin-Area-RISC-V-Group/

Israel RISC-V Meetups

https://www.meetup.com/lsrael-RISC-V-meetups/

Cambridge RISC-V Meetup Group

https://www.meetup.com/Cambridge-RISC-V-Meetup-Group/

Bristol RISC-V Meetup Group

https://www.meetup.com/Bristol-RISC-V-Meetup-Group/

Pune RISC-V Group

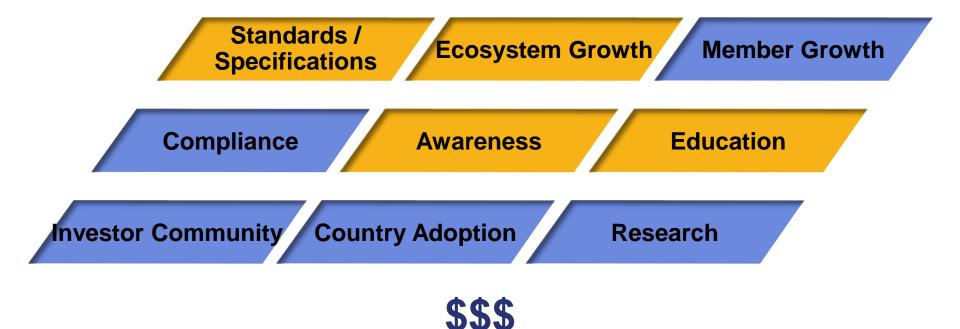
https://www.meetup.com/Pune-RISC-V-Group/

Vienna RISC-V Meetup

https://www.meetup.com/Vienna-RISC-V-Meetup/

Shanghai RISC-V Meetup

https://www.meetup.com/shanghai-riscv/


- Newly created CEO position
- Partnership with the Linux Foundation
 - Leverage services and support
 - Enable synergies with other open-source organizations
- Addition of more dedicated staff

Previously, Vice-President of IBM Z Ecosystem division; President of OpenPOWER Foundation.

1 Major Annual Summit (San Jose) + 2 Workshops (Zurich & Taiwan)

• Expecting to grow the number and size

15 One-Day events

- US (Milpitas, Irvine, Austin, Boston)
- China (Beijing, Shanghai, Hanzhou, Shenzhen, Chengdu)
- Europe (UK, Munich, Berlin, Paris, Tel Aviv, Estonia)

Sponsored webinars

Continue working with members on grass root initiatives

- Meetups
- Member-held
 events

Develop Education Resources At All Levels

Drive Adoption By Universities

Develop Corporate Education Partnership Programs to Reach Students Globally

Develop a Training Certification Program

$\widehat{}$		
= •	_	-
	_	
	_	

Develop Online Training Modules

Foundation's Value for Members

- Ability to drive standards and set direction on future specifications
- Use of the RISC-V trademarks and logos
- Several RISC-V Foundation Groups for support (technical, marketing, educational, etc)
- Strong ecosystem for support
- Marketability to a large client base
- Exposure to global markets

RISC-V Ecosystem

Open-source software: Gcc, binutils, glibc, Linux, BSD,

LLVM, QEMU, FreeRTOS, ZephyrOS, LiteOS, SylixOS, ...

Commercial software:

Lauterbach, Segger, IAR, Micrium, ExpressLogic, Ashling, Imperas, ...

Software

ISA specification Golden Model

Compliance

Hardware

Open-source cores: Rocket, BOOM, RI5CY, Ariane, PicoRV32, Piccolo,

RISC-

Foundation

SCR1, Swerv, Hummingbird,

Commercial core providers: Andes, Bluespec, Cloudbear, Codasip, Cortus, C-Sky, Nuclei, SiFive, Syntacore, ...

Inhouse cores: Nvidia, +others

Foundation ISA Standards Development

- Unprivileged base and initial extensions now formally ratified
 - RV32IMFDC, RV64IMFDC
 - "A" extension has one minor issue to resolve (LR/SC progress)
 - User ISA stable since 2014 release
- Privileged spec formally ratified
- Multiple Formal models available, in public review right now
- Vector specification 0.7 released as stable draft in January 2019
 - Largest single extension to date
 - Target of advanced implementation work
- Other new ISA modules in advanced development:
 - Fast interrupts, DSP, Bit manipulation, Hypervisor, ...
- Member-driven ISA roadmap

Foundation Working Groups (partial list)

The RISC-V Big Tent Philosophy

- Enable all types of RISC-V implementation
 - 32-bit microcontrollers with 1KiB SRAM
 - 64-bit Unix servers with virtualization
 - 128-bit 100,000-core supercomputers with PiBs DRAM
 - Fully open platforms, only open-source software
 - Fully locked-down platforms, completely trusted
 - Platforms with pay-as-you-go hardware and software
 - Platforms with extensive non-conforming extensions
 - QEMU RISC-V containers running on x86 servers
- Minimize wasted work through maximum reuse
 - Factor out platform-level requirements from reusable ISA and SW modules
- Use standard platform profiles to reduce ecosystem effort
 - Platform profiles tightly constrain choices among all options

Fragmentation versus Diversity

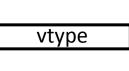
Fragmentation:

Same thing done different ways

Diversity: Solving different problems

RISC-V and Security

Security is one of biggest challenges in contemporary computer architecture, so which to trust?


- Simple free ISA with open implementations and publicly scrutinized security systems
- Baroque proprietary ISAs with complex unauditable implementations of NDA-only security systems
 RISC-V already the center of security architecture
 research
- Small set of hardware primitives support everything from embedded security to remote cloud enclaves

RISC-V Vector Extension Overview

vl

Vector length CSR sets number of elements active in each instruction

Vtype sets width of element in each vector register (e.g., 32-bit, 16-bit)

	v31[0]	v31[1]	v31[VLMAX-1]
32 vector registers			
	v1[0]	v1[1]	 v1[VLMAX-1]
	v0[0]	v0[1]	 v0[VLMAX-1]

- Unit-stride, strided, scatter-gather, structure load/store instructions
- Rich set of integer, fixed-point, and floating-point instructions
- Vector-vector, vector-scalar, and vector-immediate instructions
- Multiple vector registers can be combined to form longer vectors to reduce instruction bandwidth or support mixed-precision operations (e.g., 16b*16b->32b multiply-accumulate)
- Designed for extension with custom datatypes and widths

Maximum vector length (VLMAX) depends on implementation, number of vector registers used, and type of each element.

Industry Adoption Status

- Large companies adopting RISC-V for deeply embedded controllers in their SoCs ("minion cores")
 - NVIDIA publicly announced all future GPUs will use RISC-V
 - Western Digital publicly announced transition of all billion cores/year to RISC-V
 - Replaces home-grown and commercial cores
 - Others waiting in the wings

CTOs across entire worldwide value chain of IC

suppliers, system providers, service providers, are evaluating RISC-V strategies

Replacing 2nd-tier ISAs

- Smaller proprietary-ISA soft-core IP companies switching to RISC-V standard to access larger market:
 - Andes
 - Codasip
 - Cortus
 - C-Sky
 - others to announce

If you're a softcore IP provider, you should have a RISC-V product in development

Startups

- Many startups choosing RISC-V for new products
- Esperanto announced 4,096-core 7nm RISC-V chip, with high-end OoO cores
- Fadu SSD controller announcement
- Kendryte AI microcontroller, \$3 chip with two RISC-V cores from open-source Rocket codebase
- Most are stealthy so will not be visible for a while

We haven't had to tell startups about RISC-V; they find out pretty quickly when shopping for processor IP

Commercial Ecosystem Providers

- Mainstream commercial ecosystem support rapidly appearing
 - Lauterbach, Micrium, Segger, IAR, Express Logic, Imperas, UltraSOC, ...

Demand is driving supply in commercial ecosystem

Government Adoption

- India has adopted RISC-V as national ISA
- US DARPA mandated RISC-V in recent security call for proposals
- Israel Innovation Authority creating GenPro incubator around RISC-V
- Shanghai Municipal Govt supporting RISC-V companies
- Other governments at various stages of investigation

If your country wishes to control security of its own information infrastructure, and promote its indigenous semiconductor industry, support RISC-V

RISC-V in Education

RISC-V: Completing the Innovation Cycle

Open ecosystem is key to keeping the virtuous cycle going